You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

440 lines
16 KiB

2 years ago
import importlib
import gzip
import pickle
from pprint import pprint
from tqdm import tqdm
from tqdm.contrib.concurrent import process_map
import numpy as np
import pandas as pd
import dolphindb as ddb
import dolphindb.settings as keys
import sqlalchemy as sa
import ProtoBuffEntitys
def make_symbol(series):
return series.astype('int32').astype('str')\
.apply(str.zfill, args=(6,))\
.apply(lambda code : \
code + '.SH' if code[:2] == '60' \
else code + '.SZ')
def make_date(series):
return pd.to_datetime(
series.astype(str), format='%Y%m%d')
def make_nparray(series):
return series.apply(lambda x : np.array(x))
def make_time(series):
s_hr = series // 10000000 * 3600000
s_min = series % 1000000 // 100000 * 60000
s_sec = series % 100000 // 1000
s_ms = series % 1000
return pd.to_timedelta(s_hr + s_min + s_sec + s_ms, unit='ms')
class DDBLoader(object):
"""
0. 从sql-server中读取calendar数据并创建成员变量df_calendardf_calendar可以保存在本地pickle作为缓存
|- `def make_calendar_df(self) -> df_calendar`
1. 创建ddb中的数据库分区性质从calendar数据中获取
|- `def create_ddb_database(self, df_calendar) -> void`
|- `def load_ddb_database(self) -> void`
2. 在ddb数据库中创建calendar表
|- `def create_ddb_calendar(self, df_calendar) -> void`
3. 创建ddb的分布式表结构
|- `create_ddb_partition_table(self, hft_type_name)`
|- `_make_table_skeleton(self, hft_type_name, capacity) -> memory_table_name`
4. 从sql server的高频数据转录到dolpindb数据库中
|- `dump_hft_to_ddb(self, type_name, stock_id, trade_date=None)`
"""
hft_type_list = ['KLine', 'Order', 'Tick', 'TickQueue', 'Transe']
protobuff_name_dict = {
name : f"{name}Message_pb2" for name in hft_type_list
}
protobuff_module_dict = {
type_name : importlib.import_module(f".{module_name}", package='ProtoBuffEntitys')
for type_name, module_name in protobuff_name_dict.items()
}
protobuff_desc_dict = {
type_name : eval(f"ProtoBuffEntitys.{module_name}.{type_name}Array.{type_name}Data.DESCRIPTOR")
for type_name, module_name in protobuff_name_dict.items()
}
mssql_name_dict = {
type_name : (
f"{type_name}" if type_name != 'TickQueue' \
else f"TickQue"
) for type_name in hft_type_list
}
# 数据库路径和数据库名可以不一致
ddb_path = "dfs://hft_ts_stock"
ddb_dbname = "db_ts_stock"
ddb_memory_table_suffix = "Memroy"
ddb_partition_table_suffix = "Partitioned"
# calendar表不需要分区因此需要创建一个新的数据库
# 该数据库可以是一个简单的csv现在还不清楚两者的差别
#ddb_calendar_path = "dfs://daily_calendar"
#ddb_calendar_dbname = "db_calendar"
ddb_calendar_table_name = "Calendar"
col_type_mapping = {
'code' : 'SYMBOL',
'm_nDate' : 'DATE',
'm_nTime' : 'TIME',
1 : 'FLOAT',
3 : 'INT',
5 : 'INT',
13 : 'INT',
}
mssql_config = {
'host' : '192.168.1.7',
'username' : 'sa',
'password' : 'passw0rd!'
}
ddb_config = {
'host' : '192.168.1.167',
'username' : 'admin',
'password' : '123456'
}
default_table_capacity = 10000
def __init__(self):
self.mssql_engine = sa.create_engine(
"mssql+pyodbc://{username}:{password}@{host}/master?driver=ODBC+Driver+18+for+SQL+Server".format(**self.mssql_config),
connect_args = {
"TrustServerCertificate": "yes"
}, echo=False
)
self.ddb_sess = ddb.session(self.ddb_config['host'], 8848)
self.ddb_sess.login(self.ddb_config['username'], self.ddb_config['password'])
def init_ddb_database(self, df_calendar):
"""
1. 创建ddb_database
2. 创建calendar表
3. 创建数据分区表
"""
# df_calendar还是由外部输入比较方便
#df_calendar = self.make_calendar_df()
self.create_ddb_database(df_calendar)
self.create_ddb_calendar(df_calendar)
for hft_type_name in self.hft_type_list:
self.create_ddb_partition_table(hft_type_name)
def init_ddb_table_data(self, df_calendar):
"""
对每个股票进行循环转录数据到分区表
"""
stock_list = df_calendar['code'].unique().astype('str')
for hft_type_name in self.hft_type_list:
print('Will work on hft type:', hft_type_name)
with tqdm(stock_list) as pbar:
for stock_id in pbar:
pbar.set_description(f"Working on stock {stock_id}")
self.dump_hft_to_ddb(hft_type_name, stock_id, pbar=pbar)
def _get_stock_date_list(self, cache=False):
"""
Deprecated: This function is replaced by `create_ddb_calendar()`.
"""
if cache:
with open('tmp.pkl', 'rb') as fin:
stock_list, date_list = pickle.load(fin)
else:
with self.mssql_engine.connect() as conn:
# 从KLine表查询主要是因为KLine表最小
stat = "select distinct S_INFO_WINDCODE, TRADE_DT from Level2BytesKline.dbo.KLine"
rs = conn.execute(stat)
stock_date_list = [(stock_name, date) for stock_name, date in rs.fetchall()]
stock_list, date_list = zip(*stock_date_list)
# cache
#with open('tmp.pkl', 'wb') as fout:
# pickle.dump((stock_list, date_list), fout)
return pd.Series(stock_list, dtype='str').unique(), \
pd.Series(date_list, dtype='datetime64[D]').unique()
def create_ddb_database(self, pd_calendar):
# 从`pd_calendar`中创建`stock_list`和`date_list`
stock_list = pd_calendar['code'].unique().astype('str')
date_list = pd_calendar['m_nDate'].unique().astype('datetime64[D]')
# 可以把所有股票高频数据放在一个数据库中不同的表
# 分区策略是跟数据库绑定的,因此需要保证同一个数据库中的表都使用同样的分区额策略
# 对于股票高频数据我们可以使用COMPO的分区策略并且两个子db的分区策略都是VALUE类型的code和m_nDate字段
if self.ddb_sess.existsDatabase(self.ddb_path):
print('Wiil drop database:', self.ddb_path)
self.ddb_sess.dropDatabase(self.ddb_path)
# 要创建一个COMPO分区的数据库需要首先创建两个简单分区的子数据库
# 这里我们使用先按日期,然后按股票分区的子数据库
# Please note that when creating a DFS database with COMPO domain,
# the parameter dbPath for each partition level must be either an empty string or unspecified.
db_date = self.ddb_sess.database('db_date', partitionType=keys.VALUE, partitions=date_list, dbPath='')
# 这里看起来直接使用dolphindb的脚本语句更方便一些
#db_stock = self.ddb_sess.database('db_stock', partitionType=keys.VALUE, partitions=stock_list, dbPath='')
self.ddb_sess.run("""
db_stock = database("", 1, symbol({partitions}))
""".format(
partitions = '`' + '`'.join(stock_list)
))
self.ddb_sess.run("""
{dbName} = database(
directory = '{dbPath}',
partitionType = COMPO,
partitionScheme = [db_date, db_stock],
engine = "TSDB")
""".format(
dbName = self.ddb_dbname,
dbPath = self.ddb_path
))
def load_ddb_database(self):
db_date = self.ddb_sess.database('db_date', dbPath='')
db_stock = self.ddb_sess.database('db_stock', dbPath='')
self.ddb_sess.run("{dbName} = database(directory='{dbPath}')".format(
dbName = self.ddb_dbname,
dbPath = self.ddb_path
))
def create_ddb_calendar(self, df_calendar):
mem_table = self.ddb_calendar_table_name + self.ddb_memory_table_suffix
per_table = self.ddb_calendar_table_name
# 1. 创建临时内存表
# calendar的行数大概是股票数量 * 交易日数量
self.ddb_sess.run("""
{table_name} = table({capacity}:0, {col_names}, [{col_types}]);
""".format(
table_name = mem_table,
capacity = 5000 * 1000,
col_names = '`code`m_nDate',
col_types = "SYMBOL, DATE"
))
print('Did create the memory table')
# 2. 向内存表中插入所有(code, date)数据
appender = ddb.tableAppender(tableName=mem_table, ddbSession=self.ddb_sess)
num = appender.append(df_calendar)
print('Did append calendar data into ddb memory table, return code', num)
# 3. 创建持久化表格之前需要先根据路径创建一个database对象
# 但研究了一下发现好像一个database里面可以同时存在分区表和非分区表
# 所以在这里暂时就不创建新的database了
# 但因为原database设置成了TSDB所以必须在createTable的时候指定sortKey
#self.ddb_sess.run("""
# {db_name} =
#""")
# 4. 直接从内存表创建一个持久化表格
if self.ddb_sess.existsTable(self.ddb_path, per_table):
self.ddb_sess.dropTable(self.ddb_path, per_table)
self.ddb_sess.run("""
tableInsert(createTable(
dbHandle={ddb_dbname},
table={mem_table},
tableName=`{per_table},
sortCOlumns=`code`m_nDate,
compressMethods={{"m_nDate":"delta"}}
), {mem_table})
""".format(
ddb_dbname = self.ddb_dbname,
mem_table = mem_table,
per_table = per_table
))
print('Did create the persistent table with the memory table')
def make_calendar_df(self):
# 从KLine表查询主要是因为KLine表最小
with self.mssql_engine.connect() as conn:
stat = "select distinct S_INFO_WINDCODE, TRADE_DT from Level2BytesKline.dbo.KLine"
rs = conn.execute(stat)
stock_date_list = [(stock_name, date) for stock_name, date in rs.fetchall()]
df_calendar = pd.DataFrame(stock_date_list, columns=['code', 'm_nDate'])
df_calendar['m_nDate'] = make_date(df_calendar['m_nDate'])
print('Did make the DataFrame for calendar')
return df_calendar
def _make_table_skeleton(self, hft_type_name, table_capacity=default_table_capacity):
def _make_tbl_config(field_list):
"""
根据ProtoBuffEntity对象的Descriptor.fields创建ddb标准的列名列表和列类型列表
"""
col_name_list, col_type_list = [], []
for desc in field_list:
col_name_list.append(desc.name)
# 如果对列明有特殊设定,目前仅包括`code`m_nDate和`m_nTime三个字段
if desc.name in self.col_type_mapping:
col_type_list.append(self.col_type_mapping[desc.name])
# 通过对ProtoBuffEntity的类型编号映射到ddb的类型编号
# 如果默认值是一个数组那么ddb类型要额外增加说明是数组
# ProtoBuffEntity的类型编号只针对基本类型数组需要通过`default_value`来判断
else:
col_type = self.col_type_mapping[desc.type]
if isinstance(desc.default_value, list):
col_type += '[]'
col_type_list.append(col_type)
return col_name_list, col_type_list
desc_obj = self.protobuff_desc_dict[hft_type_name]
col_name_list, col_type_list = _make_tbl_config(desc_obj.fields)
table_name = hft_type_name + self.ddb_memory_table_suffix
print('-' * 80)
print('Will create table structure:', table_name)
self.ddb_sess.run("""
{table_name} = table({capacity}:0, {col_names}, [{col_types}]);
""".format(
table_name = table_name,
capacity = table_capacity,
col_names = '`' + '`'.join(col_name_list),
col_types = ', '.join([f"'{type_name}'" for type_name in col_type_list])
))
res = self.ddb_sess.run(f"schema({table_name}).colDefs")
pprint(res)
print('-' * 80)
return table_name
def create_ddb_partition_table(self, hft_type_name):
memory_table_name = self._make_table_skeleton(hft_type_name, 10)
partition_table_name = hft_type_name + self.ddb_partition_table_suffix
print('-' * 80)
print('Will create partitioned table:', partition_table_name)
self.ddb_sess.run("""
db_ts_stock.createPartitionedTable(
table = {memory_table_name},
tableName = `{partition_table_name},
partitionColumns = `m_nDate`code,
sortColumns = `code`m_nDate`m_nTime,
compressMethods = {{m_nDate:"delta", m_nTime:"delta"}}
)
""".format(
memory_table_name = memory_table_name,
partition_table_name = partition_table_name
))
res = self.ddb_sess.run(f"schema(loadTable('{self.ddb_path}', '{partition_table_name}')).colDefs")
pprint(res)
print('-' * 80)
def _make_stock_daily_df(self, blob, type_name):
blob = gzip.decompress(blob)
dataArray = eval(f"ProtoBuffEntitys.{type_name}Message_pb2.{type_name}Array()")
dataArray.ParseFromString(blob)
data_dict_list = [
{field.name : val for field, val in entry.ListFields()}
for entry in dataArray.dataArray
]
array_type_list = [
field.name
for field, val in dataArray.dataArray[0].ListFields()
if isinstance(field.default_value, list)
]
#pprint(array_type_list)
df = pd.DataFrame(data_dict_list)
df['code'] = make_symbol(df['code'])
df['m_nDate'] = make_date(df['m_nDate'])
df['m_nTime'] = df['m_nDate'] + make_time(df['m_nTime'])
for field_name in array_type_list:
df[field_name] = make_nparray(df[field_name])
#print(f"Did create ddb table for dataframe of shape {df.shape}")
# self.make_table_skeleton(type_name, df.shape[0])
self.ddb_sess.upload({type_name : df})
return type_name
def dump_hft_to_ddb(self, type_name, stock_id, trade_date=None, pbar=None, num_workers=4):
def _dump_stock_daily(row):
df_table_name = self._make_stock_daily_df(row[2], type_name)
self.ddb_sess.run("tableInsert(loadTable('{dbPath}', `{partitioned_table_name}), {df_table_name})".format(
dbPath = self.ddb_path,
partitioned_table_name = type_name + self.ddb_partition_table_suffix,
df_table_name = df_table_name
))
# 经过尝试按个股来做batch查询效率还是可以接受的
# mssql中索引字段是(S_INFO_WINDCODE, TRADE_DT)
with self.mssql_engine.connect() as conn:
stat = """
select * from [Level2Bytes{mssql_type_name}].dbo.[{mssql_type_name}]
where S_INFO_WINDCODE='{stock_id}'
""".format(
mssql_type_name = self.mssql_name_dict[type_name],
stock_id = stock_id
)
rs = conn.execute(stat)
if pbar:
pbar.set_description(f"Did get the result set for stock {stock_id} from mssql")
else:
print(f"Did get the result set for stock {stock_id} from mssql")
# 每一行是当个个股某一日的所有高频交易信息
# 使用多进程来加快速度
#with tqdm(rs.fetchall(), leave=False) as pbar:
# for row in pbar:
# pbar.set_description(f"Working on {row[0]} {row[1]}")
process_map(_dump_stock_daily, rs.fetchall(), max_workers=num_workers)
def main():
loader = DDBLoader()
df_calendar = loader.make_calendar_df()
loader.init_ddb_database(df_calendar)
print('Did finish init_ddb_database')
loader.init_ddb_table_data(df_calendar)
print('Did finish init_table_data')
if __name__ == '__main__':
main()