Update , move connection out of the loop, so that it can be reused, fixing another memory leak issue.

main
Guofu Li 2 years ago
parent 68610470c4
commit 59b970532e

@ -119,12 +119,15 @@ class DDBHFTLoader(DDBLoader):
# 不能重复创建Pool对象因此需要在循环的最外侧创建好Pool对象然后传参进去
with Pool(self.num_workers if num_workers is None else num_workers) as pool:
for hft_type_name in self.hft_type_list:
print('Will work on hft type:', hft_type_name)
with tqdm(stock_list) as pbar:
for stock_id in pbar:
pbar.set_description(f"Working on stock {stock_id}")
self.dump_hft_to_ddb(hft_type_name, stock_id, pbar=pbar, pool=pool)
# Always reuse the connection object, to reduce the memory consumption.
with self.mssql_engine.connect() as conn:
# Loop through the stock list.
for hft_type_name in self.hft_type_list:
print('Will work on hft type:', hft_type_name)
with tqdm(stock_list) as pbar:
for stock_id in pbar:
pbar.set_description(f"Working on stock {stock_id}")
self.dump_hft_to_ddb(hft_type_name, stock_id, conn, pbar=pbar, pool=pool)
def _get_stock_date_list(self, cache=False):
@ -354,7 +357,7 @@ class DDBHFTLoader(DDBLoader):
print('-' * 80)
def dump_hft_to_ddb(self, type_name, stock_id, trade_date=None, pbar=None, pool=None):
def dump_hft_to_ddb(self, type_name, stock_id, conn, trade_date=None, pbar=None, pool=None):
if (type_name, stock_id, 'OK') in self.dump_journal_df.index:
message = f"Will skip ({type_name}, {stock_id}) as it appears in the dump journal."
if pbar is None:
@ -376,53 +379,52 @@ class DDBHFTLoader(DDBLoader):
# 经过尝试按个股来做batch查询效率还是可以接受的
# mssql中索引字段是(S_INFO_WINDCODE, TRADE_DT)
with self.mssql_engine.connect() as conn:
stat = """
select * from [Level2Bytes{mssql_type_name}].dbo.[{mssql_type_name}]
where S_INFO_WINDCODE='{stock_id}'
""".format(
mssql_type_name = self.mssql_name_dict[type_name],
stock_id = stock_id
)
row_list = list(conn.execute(stat).fetchall())
# 如果`_journal_dt`不为空,则说明之前的日志中表明改股票数据已经部分完成,需要逐个核对日期
# 这里只把日期值不再`_journal_dt`的记录放入`row_list`
if _journal_dt is not None:
row_list = [row for row in row_list
if pd.to_datetime(row[1]) not in _journal_dt.index]
print(f"Resume job for {stock_id}, with {len(row_list)} rows left.")
num_rows = len(row_list)
# 如果行数为0则说明是空数据可以直接返回
if num_rows == 0:
return
if pbar:
#pbar.set_description(f"Did get the result set for stock {stock_id} from mssql")
pbar.set_description(f"Will work in paralle on dumping job on {stock_id} of len {num_rows}")
else:
print(f"Did get the result set for stock {stock_id} from mssql")
# 每一行是当个个股某一日的所有高频交易信息
# 使用多进程来加快速度
#with Pool(self.num_workers if num_workers is None else num_workers) as pool:
if pool is None:
print("Will create new Pool object, but this is not encourage for large batch work.")
pool = Pool(self.num_worker)
# 在单个股票内部,对不同日期进行并行处理,对内存使用较为友好,不需要同时载入多个股票海量的全历史数据
with tqdm(total=num_rows, leave=False) as sub_pbar:
for _ in pool.imap_unordered(
functools.partial(
DDBHFTLoader.dump_stock_daily_to_ddb,
type_name = type_name,
stock_id = stock_id
),
row_list
):
sub_pbar.update()
stat = """
select * from [Level2Bytes{mssql_type_name}].dbo.[{mssql_type_name}]
where S_INFO_WINDCODE='{stock_id}'
""".format(
mssql_type_name = self.mssql_name_dict[type_name],
stock_id = stock_id
)
row_list = list(conn.execute(stat).fetchall())
# 如果`_journal_dt`不为空,则说明之前的日志中表明改股票数据已经部分完成,需要逐个核对日期
# 这里只把日期值不再`_journal_dt`的记录放入`row_list`
if _journal_dt is not None:
row_list = [row for row in row_list
if pd.to_datetime(row[1]) not in _journal_dt.index]
print(f"Resume job for {stock_id}, with {len(row_list)} rows left.")
num_rows = len(row_list)
# 如果行数为0则说明是空数据可以直接返回
if num_rows == 0:
return
if pbar:
#pbar.set_description(f"Did get the result set for stock {stock_id} from mssql")
pbar.set_description(f"Will work in paralle on dumping job on {stock_id} of len {num_rows}")
else:
print(f"Did get the result set for stock {stock_id} from mssql")
# 每一行是当个个股某一日的所有高频交易信息
# 使用多进程来加快速度
#with Pool(self.num_workers if num_workers is None else num_workers) as pool:
if pool is None:
print("Will create new Pool object, but this is not encourage for large batch work.")
pool = Pool(self.num_worker)
# 在单个股票内部,对不同日期进行并行处理,对内存使用较为友好,不需要同时载入多个股票海量的全历史数据
with tqdm(total=num_rows, leave=False) as sub_pbar:
for _ in pool.imap_unordered(
functools.partial(
DDBHFTLoader.dump_stock_daily_to_ddb,
type_name = type_name,
stock_id = stock_id
),
row_list
):
sub_pbar.update()
self.dump_journal_writer.write(f"{type_name},{stock_id},OK\n")
self.dump_journal_writer.flush()

Loading…
Cancel
Save