Bug fixes: create python processor pool dynamically, which solves the issue of memory leak for good.

main
Guofu Li 2 years ago
parent bcb45b8f5f
commit 893603fafc

@ -96,8 +96,7 @@ class DDBHFTLoader(DDBLoader):
default_table_capacity = 10000
# TODO: 这里需要饮用自身文件的绝对路径,然后再寻找其父目录
ddb_dump_journal_fname = '../assets/ddb_dump_journal.csv'
ddb_sess_pool = ddb.DBConnectionPool(DDBLoader.ddb_config['host'], 8848, num_workers)
#ddb_sess_pool = ddb.DBConnectionPool(DDBLoader.ddb_config['host'], 8848, num_workers)
def init_ddb_database(self, df_calendar):
"""
@ -120,16 +119,16 @@ class DDBHFTLoader(DDBLoader):
stock_list = df_calendar['code'].unique().astype('str')
# 不能重复创建Pool对象因此需要在循环的最外侧创建好Pool对象然后传参进去
with Pool(self.num_workers if num_workers is None else num_workers) as pool:
# Always reuse the connection object, to reduce the memory consumption.
with self.mssql_engine.connect() as conn:
# Loop through the stock list.
for hft_type_name in self.hft_type_list:
print('Will work on hft type:', hft_type_name)
with tqdm(stock_list) as pbar:
for stock_id in pbar:
pbar.set_description(f"Working on stock {stock_id}")
self.dump_hft_to_ddb(hft_type_name, stock_id, conn, pbar=pbar, pool=pool)
#with Pool(self.num_workers if num_workers is None else num_workers) as pool:
# Always reuse the connection object, to reduce the memory consumption.
with self.mssql_engine.connect() as conn:
# Loop through the stock list.
for hft_type_name in self.hft_type_list:
print('Will work on hft type:', hft_type_name)
with tqdm(stock_list) as pbar:
for stock_id in pbar:
pbar.set_description(f"Working on stock {stock_id}")
self.dump_hft_to_ddb(hft_type_name, stock_id, conn, pbar=pbar)
def _get_stock_date_list(self, cache=False):
@ -359,7 +358,7 @@ class DDBHFTLoader(DDBLoader):
print('-' * 80)
def dump_hft_to_ddb(self, type_name, stock_id, conn, trade_date=None, pbar=None, pool=None):
def dump_hft_to_ddb(self, type_name, stock_id, conn, trade_date=None, pbar=None):
if (type_name, stock_id, 'OK') in self.dump_journal_df.index:
message = f"Will skip ({type_name}, {stock_id}) as it appears in the dump journal."
if pbar is None:
@ -413,13 +412,14 @@ class DDBHFTLoader(DDBLoader):
# 使用多进程来加快速度
#with Pool(self.num_workers if num_workers is None else num_workers) as pool:
if pool is None:
print("Will create new Pool object, but this is not encourage for large batch work.")
pool = Pool(self.num_worker)
#if pool is None:
# print("Will create new Pool object, but this is not encourage for large batch work.")
# pool = Pool(self.num_worker)
py_proc_pool = Pool(self.num_workers)
# 在单个股票内部,对不同日期进行并行处理,对内存使用较为友好,不需要同时载入多个股票海量的全历史数据
with tqdm(total=num_rows, leave=False) as sub_pbar:
for _ in pool.imap_unordered(
for _ in py_proc_pool.imap_unordered(
functools.partial(
DDBHFTLoader.dump_stock_daily_to_ddb,
type_name = type_name,
@ -429,7 +429,12 @@ class DDBHFTLoader(DDBLoader):
):
sub_pbar.update()
# Always remember to close and join the pool mannally.
py_proc_pool.close()
py_proc_pool.join()
del(row_list)
self.dump_journal_writer.write(f"{type_name},{stock_id},OK\n")
self.dump_journal_writer.flush()
@ -506,5 +511,6 @@ class DDBHFTLoader(DDBLoader):
ddb_sess.undefAll()
ddb_sess.close()
del(ddb_sess)
del(row)

Loading…
Cancel
Save