From 893603fafcb170692b8a5a1824fcf5787802fe5d Mon Sep 17 00:00:00 2001
From: Guofu Li
Date: Sun, 28 Aug 2022 19:59:49 +0800
Subject: [PATCH] Bug fixes: create python processor pool dynamically, which
solves the issue of memory leak for good.
---
src/loader/DDBHFTLoader.py | 40 ++++++++++++++++++++++----------------
1 file changed, 23 insertions(+), 17 deletions(-)
diff --git a/src/loader/DDBHFTLoader.py b/src/loader/DDBHFTLoader.py
index 5360ea4..641acd3 100644
--- a/src/loader/DDBHFTLoader.py
+++ b/src/loader/DDBHFTLoader.py
@@ -96,8 +96,7 @@ class DDBHFTLoader(DDBLoader):
default_table_capacity = 10000
# TODO: 这里需要饮用自身文件的绝对路径,然后再寻找其父目录
ddb_dump_journal_fname = '../assets/ddb_dump_journal.csv'
-
- ddb_sess_pool = ddb.DBConnectionPool(DDBLoader.ddb_config['host'], 8848, num_workers)
+ #ddb_sess_pool = ddb.DBConnectionPool(DDBLoader.ddb_config['host'], 8848, num_workers)
def init_ddb_database(self, df_calendar):
"""
@@ -120,16 +119,16 @@ class DDBHFTLoader(DDBLoader):
stock_list = df_calendar['code'].unique().astype('str')
# 不能重复创建Pool对象,因此需要在循环的最外侧创建好Pool对象,然后传参进去
- with Pool(self.num_workers if num_workers is None else num_workers) as pool:
- # Always reuse the connection object, to reduce the memory consumption.
- with self.mssql_engine.connect() as conn:
- # Loop through the stock list.
- for hft_type_name in self.hft_type_list:
- print('Will work on hft type:', hft_type_name)
- with tqdm(stock_list) as pbar:
- for stock_id in pbar:
- pbar.set_description(f"Working on stock {stock_id}")
- self.dump_hft_to_ddb(hft_type_name, stock_id, conn, pbar=pbar, pool=pool)
+ #with Pool(self.num_workers if num_workers is None else num_workers) as pool:
+ # Always reuse the connection object, to reduce the memory consumption.
+ with self.mssql_engine.connect() as conn:
+ # Loop through the stock list.
+ for hft_type_name in self.hft_type_list:
+ print('Will work on hft type:', hft_type_name)
+ with tqdm(stock_list) as pbar:
+ for stock_id in pbar:
+ pbar.set_description(f"Working on stock {stock_id}")
+ self.dump_hft_to_ddb(hft_type_name, stock_id, conn, pbar=pbar)
def _get_stock_date_list(self, cache=False):
@@ -359,7 +358,7 @@ class DDBHFTLoader(DDBLoader):
print('-' * 80)
- def dump_hft_to_ddb(self, type_name, stock_id, conn, trade_date=None, pbar=None, pool=None):
+ def dump_hft_to_ddb(self, type_name, stock_id, conn, trade_date=None, pbar=None):
if (type_name, stock_id, 'OK') in self.dump_journal_df.index:
message = f"Will skip ({type_name}, {stock_id}) as it appears in the dump journal."
if pbar is None:
@@ -413,13 +412,14 @@ class DDBHFTLoader(DDBLoader):
# 使用多进程来加快速度
#with Pool(self.num_workers if num_workers is None else num_workers) as pool:
- if pool is None:
- print("Will create new Pool object, but this is not encourage for large batch work.")
- pool = Pool(self.num_worker)
+ #if pool is None:
+ # print("Will create new Pool object, but this is not encourage for large batch work.")
+ # pool = Pool(self.num_worker)
+ py_proc_pool = Pool(self.num_workers)
# 在单个股票内部,对不同日期进行并行处理,对内存使用较为友好,不需要同时载入多个股票海量的全历史数据
with tqdm(total=num_rows, leave=False) as sub_pbar:
- for _ in pool.imap_unordered(
+ for _ in py_proc_pool.imap_unordered(
functools.partial(
DDBHFTLoader.dump_stock_daily_to_ddb,
type_name = type_name,
@@ -429,7 +429,12 @@ class DDBHFTLoader(DDBLoader):
):
sub_pbar.update()
+ # Always remember to close and join the pool mannally.
+ py_proc_pool.close()
+ py_proc_pool.join()
+
del(row_list)
+
self.dump_journal_writer.write(f"{type_name},{stock_id},OK\n")
self.dump_journal_writer.flush()
@@ -506,5 +511,6 @@ class DDBHFTLoader(DDBLoader):
ddb_sess.undefAll()
ddb_sess.close()
del(ddb_sess)
+ del(row)