|
|
import importlib
|
|
|
import gzip
|
|
|
import pickle
|
|
|
import functools
|
|
|
import abc
|
|
|
import warnings
|
|
|
|
|
|
from pprint import pprint
|
|
|
from pathlib import Path
|
|
|
from tqdm import tqdm
|
|
|
#from tqdm.contrib.concurrent import process_map
|
|
|
from multiprocessing import Pool
|
|
|
|
|
|
import numpy as np
|
|
|
import pandas as pd
|
|
|
from pandas.core.common import SettingWithCopyWarning
|
|
|
warnings.simplefilter(action="ignore", category=SettingWithCopyWarning)
|
|
|
|
|
|
import dolphindb as ddb
|
|
|
import dolphindb.settings as keys
|
|
|
|
|
|
import sqlalchemy as sa
|
|
|
|
|
|
import ProtoBuffEntitys
|
|
|
|
|
|
|
|
|
|
|
|
class DDBLoader(object):
|
|
|
"""
|
|
|
- 放了几个公用的配置字段,包括:
|
|
|
1. SQL-Server的链接参数
|
|
|
2. DolphinDB的链接参数
|
|
|
|
|
|
- 放了几个@abstractmethod在里面,不过如果不需要使用多态特性,那应该用处不大:
|
|
|
1. create_ddb_database
|
|
|
2. create_ddb_partition_table
|
|
|
"""
|
|
|
|
|
|
mssql_config = {
|
|
|
'host' : '192.168.1.7',
|
|
|
'username' : 'sa',
|
|
|
'password' : 'passw0rd!'
|
|
|
}
|
|
|
|
|
|
ddb_config = {
|
|
|
'host' : '192.168.1.167',
|
|
|
'username' : 'admin',
|
|
|
'password' : '123456'
|
|
|
}
|
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
self.mssql_engine = sa.create_engine(
|
|
|
"mssql+pyodbc://{username}:{password}@{host}/master?driver=ODBC+Driver+18+for+SQL+Server".format(**self.mssql_config),
|
|
|
connect_args = {
|
|
|
"TrustServerCertificate": "yes"
|
|
|
}, echo=False
|
|
|
)
|
|
|
|
|
|
self.ddb_sess = ddb.session(self.ddb_config['host'], 8848)
|
|
|
self.ddb_sess.login(self.ddb_config['username'], self.ddb_config['password'])
|
|
|
|
|
|
|
|
|
@abc.abstractmethod
|
|
|
def create_ddb_database(self, *args, **kwargs):
|
|
|
"""
|
|
|
创建database函数,需要被子类具体实现。
|
|
|
"""
|
|
|
return
|
|
|
|
|
|
@abc.abstractmethod
|
|
|
def create_ddb_partition_table(self, *args, **kwargs):
|
|
|
"""
|
|
|
创建分区表函数,需要被子类具体实现。
|
|
|
"""
|
|
|
return
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
def tscode_to_windcode(series):
|
|
|
return series.apply(lambda x : x[2:] + '.' + x[:2])
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
def make_symbol(series):
|
|
|
return series.astype('int32').astype('str')\
|
|
|
.apply(str.zfill, args=(6,))\
|
|
|
.apply(lambda code : \
|
|
|
code + '.SH' if code[0] == '6' \
|
|
|
else code + '.SZ')
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
def make_date(series):
|
|
|
# 特别是对于分红表,如果某些关键日期还未公布,则会填充0,导致日期解析失败
|
|
|
series.loc[series == 0] = np.nan
|
|
|
return pd.to_datetime(
|
|
|
series.astype(str), format='%Y%m%d')
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
def make_nparray(series):
|
|
|
return series.apply(lambda x : np.array(x))
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
def make_time(series):
|
|
|
s_hr = series // 10000000 * 3600000
|
|
|
s_min = series % 10000000 // 100000 * 60000
|
|
|
s_sec = series % 100000 // 1000
|
|
|
s_ms = series % 1000
|
|
|
return pd.to_timedelta(s_hr + s_min + s_sec + s_ms, unit='ms')
|
|
|
|
|
|
|
|
|
|
|
|
class DDBPITLoader(DDBLoader):
|
|
|
|
|
|
ddb_path = "dfs://pit_stock_ts"
|
|
|
ddb_dbname = "ddb_pit_stock_ts"
|
|
|
|
|
|
num_code_partition = 50
|
|
|
|
|
|
table_name_mapping = {
|
|
|
#'CBS_AFTER_ADJ' : 'bs_common_adj',
|
|
|
#'CBS_BEFORE_ADJ' : 'bs_common_ori',
|
|
|
#'CCFS_AFTER_ADJ' : 'cfs_common_adj',
|
|
|
#'CCFS_BEFORE_ADJ' : 'cfs_common_ori',
|
|
|
#'CIS_AFTER_ADJ' : 'is_common_adj',
|
|
|
#'CIS_BEFORE_ADJ' : 'is_common_ori',
|
|
|
'DIV_WIND' : 'divident',
|
|
|
#'EP_WIND' : 'earnings_preannouncement',
|
|
|
#'PEE_WIND' : 'preliminary_earnings_estimate'
|
|
|
}
|
|
|
|
|
|
meta_col_config = {
|
|
|
'WIND_CODE' : ('code', 'SYMBOL'),
|
|
|
# mssql表中不需要记录的meta字段,在这里直接设置为None
|
|
|
'IntCode' : None,
|
|
|
'ACTUAL_ANN_DT' : None,
|
|
|
'ReportPeriod' : ('report_period', 'DATE'),
|
|
|
'AppearInPeriod' : ('appear_in_period', 'DATE'),
|
|
|
'AppearAtDate' : ('appear_at_date', 'DATE')
|
|
|
}
|
|
|
|
|
|
date_col_set = {
|
|
|
'report_period',
|
|
|
'appear_in_period',
|
|
|
'appear_at_date',
|
|
|
'ReportPeriod',
|
|
|
'AppearInPeriod',
|
|
|
'AppearAtDate',
|
|
|
'EQY_RECORD_DT',
|
|
|
'EX_DT',
|
|
|
'DVD_PAYOUT_DT',
|
|
|
'S_DIV_PRELANDATE',
|
|
|
'S_DIV_SMTGDATE',
|
|
|
'DVD_ANN_DT',
|
|
|
'S_DIV_PREANNDT'
|
|
|
}
|
|
|
|
|
|
ddb_type_mapping = {
|
|
|
'float' : 'DOUBLE',
|
|
|
'int' : 'INT',
|
|
|
'text' : 'STRING',
|
|
|
'varchar' : 'STRING',
|
|
|
'str' : 'STRING'
|
|
|
}
|
|
|
|
|
|
# 基本面数据库现在存放在91服务器之上
|
|
|
mssql_config = {
|
|
|
'host' : '192.168.1.91',
|
|
|
'username' : 'sa',
|
|
|
'password' : 'xn.123',
|
|
|
'dbname' : 'tr_statement'
|
|
|
}
|
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
super().__init__()
|
|
|
# 重新设定mssql_engine对象,此时我们需要使用基本面数据库
|
|
|
self.mssql_engine = sa.create_engine(
|
|
|
"mssql+pyodbc://{username}:{password}@{host}/{dbname}?driver=ODBC+Driver+18+for+SQL+Server".format(**self.mssql_config),
|
|
|
connect_args = {
|
|
|
"TrustServerCertificate": "yes"
|
|
|
}, echo=False
|
|
|
)
|
|
|
|
|
|
|
|
|
def create_ddb_database(self):
|
|
|
self.ddb_sess.run("""
|
|
|
{dbName} = database(
|
|
|
directory = '{dbPath}',
|
|
|
partitionType = HASH,
|
|
|
partitionScheme = [SYMBOL, {num_code_partition}],
|
|
|
engine = 'TSDB'
|
|
|
)
|
|
|
""".format(
|
|
|
dbName = self.ddb_dbname,
|
|
|
dbPath = self.ddb_path,
|
|
|
num_code_partition = self.num_code_partition
|
|
|
))
|
|
|
|
|
|
|
|
|
def _make_col_config(self, mssql_table_name):
|
|
|
"""
|
|
|
Return:
|
|
|
mssql_col_name_list, ddb_col_name_list, ddb_col_type_list
|
|
|
"""
|
|
|
with self.mssql_engine.connect() as conn:
|
|
|
col_sp_list = list(conn.execute(f"exec sp_columns {mssql_table_name}").fetchall())
|
|
|
|
|
|
mssql_col_name_list, ddb_col_name_list, ddb_col_type_list = \
|
|
|
[], [], []
|
|
|
|
|
|
for col_sp in col_sp_list:
|
|
|
_col_name = col_sp[3]
|
|
|
_col_type = col_sp[5]
|
|
|
|
|
|
# 对于meta字段,需要根据meta配置表来进行处理
|
|
|
if _col_name in self.meta_col_config:
|
|
|
# 跳过mssql表中 不需要记录的meta字段
|
|
|
if self.meta_col_config[_col_name] is None:
|
|
|
continue
|
|
|
# 字段名和字段类型都要进行映射
|
|
|
mssql_col_name_list.append(_col_name)
|
|
|
ddb_col_name_list.append(self.meta_col_config[_col_name][0])
|
|
|
ddb_col_type_list.append(self.meta_col_config[_col_name][1])
|
|
|
# 对于非meta字段,仅需要检查是否是float类型,对于float类型设置类型为DOUBLE
|
|
|
else:
|
|
|
# 需要之后被转换成DATE的字段,一般在原表中为为INT类型
|
|
|
if _col_name in self.date_col_set:
|
|
|
mssql_col_name_list.append(_col_name)
|
|
|
ddb_col_name_list.append(_col_name)
|
|
|
ddb_col_type_list.append('DATE')
|
|
|
# 按照对照表进行类型转换
|
|
|
elif _col_type in self.ddb_type_mapping:
|
|
|
mssql_col_name_list.append(_col_name)
|
|
|
ddb_col_name_list.append(_col_name)
|
|
|
ddb_col_type_list.append(self.ddb_type_mapping[_col_type])
|
|
|
# 对照表中没有的字段类型,就不加入到字段列表中了
|
|
|
else:
|
|
|
print(f"!**Unrecognized type '{_col_type}' for column {_col_name}, will skip.")
|
|
|
|
|
|
return mssql_col_name_list, ddb_col_name_list, ddb_col_type_list
|
|
|
|
|
|
|
|
|
def create_ddb_partition_table(self, mssql_table_name):
|
|
|
"""创建分区表"""
|
|
|
memory_table_name = mssql_table_name
|
|
|
partition_table_name = self.table_name_mapping[mssql_table_name]
|
|
|
|
|
|
mssql_col_name_list, ddb_col_name_list, ddb_col_type_list = \
|
|
|
self._make_col_config(mssql_table_name)
|
|
|
|
|
|
# 根据是否
|
|
|
if 'appear_in_period' in ddb_col_name_list:
|
|
|
compress_methods = """{
|
|
|
'report_period' : 'delta',
|
|
|
'appear_in_period' : 'delta',
|
|
|
'appear_at_date' : 'delta'
|
|
|
}"""
|
|
|
else:
|
|
|
compress_methods = """{
|
|
|
'report_period' : 'delta',
|
|
|
'appear_at_date' : 'delta'
|
|
|
}"""
|
|
|
|
|
|
# 因为已经根据`appear_in_period`分列了调整前和调整后,因此不需要对它再进行排序了
|
|
|
sort_columns = "`code`report_period`appear_at_date"
|
|
|
|
|
|
# 1. 先创建内存表,内存表中设定好列名和列类型
|
|
|
# 2. 然后根据内存表创建分区表,设定分区列等信息
|
|
|
self.ddb_sess.run("""
|
|
|
{memory_table_name} = table(
|
|
|
{capacity}:0,
|
|
|
{column_name_list},
|
|
|
[{column_type_list}]
|
|
|
);
|
|
|
|
|
|
if (existsTable("{ddb_path}", "{partition_table_name}")) {{
|
|
|
dropTable({ddb_dbname}, "{partition_table_name}");
|
|
|
}}
|
|
|
|
|
|
{partition_table_name} = createPartitionedTable(
|
|
|
dbHandle = {ddb_dbname},
|
|
|
table = {memory_table_name},
|
|
|
tableName = "{partition_table_name}",
|
|
|
partitionColumns = 'code',
|
|
|
compressMethods = {compress_methods},
|
|
|
sortColumns = {sort_columns}
|
|
|
);
|
|
|
""".format(
|
|
|
ddb_dbname = self.ddb_dbname,
|
|
|
ddb_path = self.ddb_path,
|
|
|
memory_table_name = memory_table_name,
|
|
|
partition_table_name = partition_table_name,
|
|
|
capacity = 10,
|
|
|
column_name_list = '`' + '`'.join(ddb_col_name_list),
|
|
|
column_type_list = ','.join(ddb_col_type_list),
|
|
|
compress_methods = compress_methods.replace('\n', '').replace(' ', ''),
|
|
|
sort_columns = sort_columns
|
|
|
))
|
|
|
print('-' * 80)
|
|
|
print(f"Did create parition table <{partition_table_name}>:")
|
|
|
pprint(self.ddb_sess.run(f"schema({partition_table_name});"))
|
|
|
return partition_table_name, mssql_col_name_list
|
|
|
|
|
|
|
|
|
def create_ddb_partition_tables(self):
|
|
|
for mssql_table_name in self.table_name_mapping:
|
|
|
self.create_ddb_partition_table(mssql_table_name)
|
|
|
|
|
|
|
|
|
def _dump_pit_to_ddb(self, mssql_table_name):
|
|
|
print('Will work on table', mssql_table_name)
|
|
|
# 返回的`mssql_col_name_list`可以用来对SQL-Server获取的dataframe进行列过滤
|
|
|
partition_table_name, mssql_col_name_list = \
|
|
|
self.create_ddb_partition_table(mssql_table_name)
|
|
|
|
|
|
with self.mssql_engine.connect() as conn:
|
|
|
stat = f"select distinct [WIND_CODE] from {mssql_table_name}"
|
|
|
stock_id_list = list(conn.execute(stat).fetchall())
|
|
|
|
|
|
with tqdm(stock_id_list) as pbar:
|
|
|
for (stock_id,) in pbar:
|
|
|
pbar.set_description(f"Will work on {stock_id}")
|
|
|
#pbar.set_description(f"Will fetch all data of {stock_id} from SQL Server")
|
|
|
stat = """
|
|
|
select * from {mssql_table_name}
|
|
|
where WIND_CODE='{stock_id}' and AppearAtDate>0
|
|
|
""".format(
|
|
|
mssql_table_name = mssql_table_name,
|
|
|
stock_id = stock_id
|
|
|
)
|
|
|
row_list = list(conn.execute(stat).fetchall())
|
|
|
num_rows = len(row_list)
|
|
|
|
|
|
# 因为对AppearAtDate做了过滤,所以有可能得到一个空的数据集
|
|
|
if num_rows == 0:
|
|
|
print(f"Will skip {stock_id} due to empty result.")
|
|
|
continue
|
|
|
|
|
|
#pbar.set_description(f"Will work on dumping job on {stock_id} of len {num_rows}")
|
|
|
# 这里需要对select语句获取的所有列进行一次过滤,以保证和partition table中的列一致
|
|
|
df = pd.DataFrame(row_list)[mssql_col_name_list]
|
|
|
# 需要把部分字段的int字段类型转换成DATE字段类型
|
|
|
for df_col in df.columns:
|
|
|
if df_col in self.date_col_set:
|
|
|
df[df_col] = DDBLoader.make_date(df[df_col])
|
|
|
# 因为在做数据库View的时候已经做过一轮转换了,所以这里就不需要再次转换了
|
|
|
#df['WIND_CODE'] = DDBLoader.tscode_to_windcode(df['WIND_CODE'])
|
|
|
|
|
|
self.ddb_sess.upload({mssql_table_name : df})
|
|
|
self.ddb_sess.run(f"{partition_table_name}.tableInsert({mssql_table_name})")
|
|
|
|
|
|
|
|
|
def dump_pit_to_ddb(self):
|
|
|
for mssql_table_name in self.table_name_mapping:
|
|
|
self._dump_pit_to_ddb(mssql_table_name)
|
|
|
|
|
|
|
|
|
class DDBDailyLoader(DDBLoader):
|
|
|
|
|
|
ddb_path = "dfs://daily_stock_ts"
|
|
|
ddb_dbname = "db_daily_stock_ts"
|
|
|
|
|
|
daily_kline_cols = [
|
|
|
'code', 'm_nDate',
|
|
|
'open', 'high', 'low', 'close', 'vol',
|
|
|
'amount', 'cjbs', 'yclose',
|
|
|
'PctChg', 'IsZt', 'IsDt', 'IsST', 'IsGoDelist',
|
|
|
'FloatShares', 'MarketValues',
|
|
|
'factor'
|
|
|
]
|
|
|
|
|
|
daily_kline_col_types = [
|
|
|
'SYMBOL', 'DATE',
|
|
|
'DOUBLE', 'DOUBLE', 'DOUBLE', 'DOUBLE', 'DOUBLE',
|
|
|
'DOUBLE', 'INT', 'DOUBLE',
|
|
|
'DOUBLE', 'INT', 'INT', 'INT', 'INT',
|
|
|
'DOUBLE', 'DOUBLE',
|
|
|
'DOUBLE'
|
|
|
]
|
|
|
|
|
|
|
|
|
def create_ddb_database(self):
|
|
|
# TODO: daily数据库已经在DDBDailyFactor中被创建了
|
|
|
# 后续可以迁移过来,不过现在就暂时先不管了
|
|
|
pass
|
|
|
|
|
|
|
|
|
def load_ddb_database(self):
|
|
|
self.ddb_sess.run("""
|
|
|
{dbName} = database(directory='{dbPath}')
|
|
|
""".format(
|
|
|
dbName = self.ddb_dbname,
|
|
|
dbPath = self.ddb_path
|
|
|
))
|
|
|
print('Did load database from', self.ddb_path)
|
|
|
|
|
|
|
|
|
def create_ddb_partition_table(self, memory_table_name, partition_table_name):
|
|
|
# TODO: 现在只做一个日频行情数据表,今后可能考虑把基本面数据也迁移过来
|
|
|
|
|
|
# 由于日频行情数据的表结构相对简单,所以直接把表结构写在这里代码里即可
|
|
|
# 搬迁数据的时候需要考虑按照逐个股票来搬迁,以免造成对内存的巨大压力
|
|
|
self.ddb_sess.run("""
|
|
|
// 确保删除原表
|
|
|
if (existsTable("{ddb_daily_path}", "{partition_table_name}")) {{
|
|
|
dropTable({ddb_daily_dbname}, "{partition_table_name}");
|
|
|
}}
|
|
|
|
|
|
// 然后根据内存表的结构,创建持久化的分区表
|
|
|
{partition_table_name} = {ddb_daily_dbname}.createPartitionedTable(
|
|
|
table = {memory_table_name},
|
|
|
tableName = "{partition_table_name}",
|
|
|
partitionColumns = `code,
|
|
|
sortColumns = `code`m_nDate,
|
|
|
compressMethods = {{m_nDate:"delta"}}
|
|
|
);
|
|
|
""".format(
|
|
|
ddb_daily_path = self.ddb_path,
|
|
|
ddb_daily_dbname = self.ddb_dbname,
|
|
|
memory_table_name = memory_table_name,
|
|
|
partition_table_name = partition_table_name,
|
|
|
))
|
|
|
|
|
|
|
|
|
def create_ddb_memory_table(self, memory_table_name, capacity):
|
|
|
self.ddb_sess.run("""
|
|
|
// 先创建一个空的内存表用来表征结构,如果无需插入数据,capacity可以设为10
|
|
|
{memory_table_name} = table({capacity}:0, {col_names}, [{col_types}]);
|
|
|
""".format(
|
|
|
memory_table_name = memory_table_name,
|
|
|
capacity = capacity,
|
|
|
col_names = '`' + '`'.join(self.daily_kline_cols),
|
|
|
col_types = ', '.join(self.daily_kline_col_types)
|
|
|
))
|
|
|
|
|
|
|
|
|
def dump_daily_kline_to_ddb(self):
|
|
|
# 先创建一个分区表,然后再逐个股票的数据插入
|
|
|
# 1. 需要额外控制在插入第一个股票数据的时候创建分区表比较麻烦
|
|
|
# 2. python程序中的dataframe直接上传到dolphindb内存表,不需要考虑内存表字段类型,分区表中设置好即可
|
|
|
|
|
|
memory_table_name = 'daily_kline_mem'
|
|
|
partition_table_name = 'daily_kline'
|
|
|
|
|
|
self.create_ddb_memory_table(memory_table_name, 10)
|
|
|
print('Did create ddb memory table.')
|
|
|
pprint(self.ddb_sess.run(f"schema({memory_table_name})"))
|
|
|
self.create_ddb_partition_table(memory_table_name, partition_table_name)
|
|
|
print('Did create ddb partition table.')
|
|
|
pprint(self.ddb_sess.run(f"schema({partition_table_name})"))
|
|
|
|
|
|
with self.mssql_engine.connect() as conn:
|
|
|
stat = "select distinct [StockID] from [StockDaily].dbo.[DailyKLine]"
|
|
|
stock_id_list = list(conn.execute(stat).fetchall())
|
|
|
|
|
|
with tqdm(stock_id_list) as pbar:
|
|
|
for (stock_id,) in pbar:
|
|
|
pbar.set_description(f"Will work on {stock_id}")
|
|
|
#pbar.set_description(f"Will fetch all data of {stock_id} from SQL Server")
|
|
|
stat = """
|
|
|
select * from [StockDaily].dbo.[DailyKLine]
|
|
|
where StockID='{stock_id}'
|
|
|
""".format(
|
|
|
stock_id = stock_id
|
|
|
)
|
|
|
row_list = list(conn.execute(stat).fetchall())
|
|
|
num_rows = len(row_list)
|
|
|
|
|
|
#pbar.set_description(f"Will work on dumping job on {stock_id} of len {num_rows}")
|
|
|
df = pd.DataFrame(row_list)
|
|
|
df['date'] = DDBLoader.make_date(df['date'])
|
|
|
df['StockID'] = DDBLoader.tscode_to_windcode(df['StockID'])
|
|
|
self.ddb_sess.upload({memory_table_name : df})
|
|
|
#print('Did upload dataframe to ddb.')
|
|
|
#pprint(self.ddb_sess.run(f"schema({memory_table_name})"))
|
|
|
#break
|
|
|
self.ddb_sess.run(f"{partition_table_name}.tableInsert({memory_table_name})")
|
|
|
|
|
|
|
|
|
|
|
|
class DDBHFTLoader(DDBLoader):
|
|
|
"""
|
|
|
0. 从sql-server中读取calendar数据,并创建成员变量df_calendar,df_calendar可以保存在本地pickle作为缓存
|
|
|
|- `def make_calendar_df(self) -> df_calendar`
|
|
|
|
|
|
1. 创建ddb中的数据库,分区性质从calendar数据中获取
|
|
|
|- `def create_ddb_database(self, df_calendar) -> void`
|
|
|
|- `def load_ddb_database(self) -> void`
|
|
|
|
|
|
2. 在ddb数据库中创建calendar表
|
|
|
|- `def create_ddb_calendar(self, df_calendar) -> void`
|
|
|
|
|
|
3. 创建ddb的分布式表结构
|
|
|
|- `create_ddb_partition_table(self, hft_type_name)`
|
|
|
|- `_make_table_skeleton(self, hft_type_name, capacity) -> memory_table_name`
|
|
|
|
|
|
4. 从sql server的高频数据转录到dolpindb数据库中
|
|
|
|- `dump_hft_to_ddb(self, type_name, stock_id, trade_date=None)`
|
|
|
"""
|
|
|
|
|
|
hft_type_list = ['KLine', 'Order', 'Tick', 'TickQueue', 'Transe']
|
|
|
|
|
|
protobuff_name_dict = {
|
|
|
name : f"{name}Message_pb2" for name in hft_type_list
|
|
|
}
|
|
|
|
|
|
protobuff_module_dict = {
|
|
|
type_name : importlib.import_module(f".{module_name}", package='ProtoBuffEntitys')
|
|
|
for type_name, module_name in protobuff_name_dict.items()
|
|
|
}
|
|
|
|
|
|
protobuff_desc_dict = {
|
|
|
type_name : eval(f"ProtoBuffEntitys.{module_name}.{type_name}Array.{type_name}Data.DESCRIPTOR")
|
|
|
for type_name, module_name in protobuff_name_dict.items()
|
|
|
}
|
|
|
|
|
|
mssql_name_dict = {
|
|
|
type_name : (
|
|
|
f"{type_name}" if type_name != 'TickQueue' \
|
|
|
else f"TickQue"
|
|
|
) for type_name in hft_type_list
|
|
|
}
|
|
|
|
|
|
# 数据库路径和数据库名可以不一致
|
|
|
ddb_path = "dfs://hft_stock_ts"
|
|
|
ddb_dbname = "db_stock_ts"
|
|
|
ddb_memory_table_suffix = "Memroy"
|
|
|
ddb_partition_table_suffix = "Partitioned"
|
|
|
|
|
|
# calendar表不需要分区,因此需要创建一个新的数据库
|
|
|
# 该数据库可以是一个简单的csv,现在还不清楚两者的差别
|
|
|
#ddb_calendar_path = "dfs://daily_calendar"
|
|
|
#ddb_calendar_dbname = "db_calendar"
|
|
|
ddb_calendar_table_name = "Calendar"
|
|
|
|
|
|
col_type_mapping = {
|
|
|
'code' : 'SYMBOL',
|
|
|
'm_nDate' : 'DATE',
|
|
|
'm_nTime' : 'TIME',
|
|
|
1 : 'FLOAT',
|
|
|
3 : 'INT',
|
|
|
5 : 'INT',
|
|
|
13 : 'INT',
|
|
|
}
|
|
|
|
|
|
# this value may be used by factor makers, which may loop through code partitions
|
|
|
num_code_partition = 50
|
|
|
|
|
|
num_workers = 8
|
|
|
default_table_capacity = 10000
|
|
|
ddb_dump_journal_fname = 'ddb_dump_journal.csv'
|
|
|
|
|
|
|
|
|
def init_ddb_database(self, df_calendar):
|
|
|
"""
|
|
|
1. 创建ddb_database
|
|
|
2. 创建calendar表
|
|
|
3. 创建数据分区表
|
|
|
"""
|
|
|
# df_calendar还是由外部输入比较方便
|
|
|
#df_calendar = self.make_calendar_df()
|
|
|
self.create_ddb_database(df_calendar)
|
|
|
self.create_ddb_calendar(df_calendar)
|
|
|
for hft_type_name in self.hft_type_list:
|
|
|
self.create_ddb_partition_table(hft_type_name)
|
|
|
|
|
|
|
|
|
def init_ddb_table_data(self, df_calendar, num_workers=None):
|
|
|
"""
|
|
|
对每个股票进行循环,转录数据到分区表
|
|
|
"""
|
|
|
stock_list = df_calendar['code'].unique().astype('str')
|
|
|
|
|
|
# 不能重复创建Pool对象,因此需要在循环的最外侧创建好Pool对象,然后传参进去
|
|
|
with Pool(self.num_workers if num_workers is None else num_workers) as pool:
|
|
|
for hft_type_name in self.hft_type_list:
|
|
|
print('Will work on hft type:', hft_type_name)
|
|
|
with tqdm(stock_list) as pbar:
|
|
|
for stock_id in pbar:
|
|
|
pbar.set_description(f"Working on stock {stock_id}")
|
|
|
self.dump_hft_to_ddb(hft_type_name, stock_id, pbar=pbar, pool=pool)
|
|
|
|
|
|
|
|
|
def _get_stock_date_list(self, cache=False):
|
|
|
"""
|
|
|
Deprecated: This function is replaced by `create_ddb_calendar()`.
|
|
|
"""
|
|
|
if cache:
|
|
|
with open('tmp.pkl', 'rb') as fin:
|
|
|
stock_list, date_list = pickle.load(fin)
|
|
|
else:
|
|
|
with self.mssql_engine.connect() as conn:
|
|
|
# 从KLine表查询,主要是因为KLine表最小
|
|
|
stat = "select distinct S_INFO_WINDCODE, TRADE_DT from Level2BytesKline.dbo.KLine"
|
|
|
rs = conn.execute(stat)
|
|
|
stock_date_list = [(stock_name, date) for stock_name, date in rs.fetchall()]
|
|
|
stock_list, date_list = zip(*stock_date_list)
|
|
|
|
|
|
# cache
|
|
|
#with open('tmp.pkl', 'wb') as fout:
|
|
|
# pickle.dump((stock_list, date_list), fout)
|
|
|
|
|
|
return pd.Series(stock_list, dtype='str').unique(), \
|
|
|
pd.Series(date_list, dtype='datetime64[D]').unique()
|
|
|
|
|
|
|
|
|
def create_ddb_database(self, pd_calendar):
|
|
|
# 从`pd_calendar`中创建`stock_list`和`date_list`
|
|
|
stock_list = pd_calendar['code'].unique().astype('str')
|
|
|
date_list = pd_calendar['m_nDate'].unique().astype('datetime64[D]')
|
|
|
|
|
|
# 可以把所有股票高频数据放在一个数据库中不同的表
|
|
|
# 分区策略是跟数据库绑定的,因此需要保证同一个数据库中的表都使用同样的分区额策略
|
|
|
# 对于股票高频数据,我们可以使用COMPO的分区策略,并且两个子db的分区策略都是VALUE类型的code和m_nDate字段
|
|
|
if self.ddb_sess.existsDatabase(self.ddb_path):
|
|
|
print('Wiil drop database:', self.ddb_path)
|
|
|
self.ddb_sess.dropDatabase(self.ddb_path)
|
|
|
|
|
|
# 要创建一个COMPO分区的数据库,需要首先创建两个简单分区的子数据库
|
|
|
# 这里我们使用先按日期,然后按股票分区的子数据库
|
|
|
# Please note that when creating a DFS database with COMPO domain,
|
|
|
# the parameter dbPath for each partition level must be either an empty string or unspecified.
|
|
|
db_date = self.ddb_sess.database('db_date', partitionType=keys.VALUE, partitions=date_list, dbPath='')
|
|
|
|
|
|
# 这里看起来直接使用dolphindb的脚本语句更方便一些
|
|
|
self.ddb_sess.run("""
|
|
|
db_stock = database("", 5, [SYMBOL, {num_code_partition}])
|
|
|
""".format(
|
|
|
num_code_partition = self.num_code_parition
|
|
|
))
|
|
|
#self.ddb_sess.run("""
|
|
|
# db_stock = database("", 1, symbol({partitions}))
|
|
|
#""".format(
|
|
|
# partitions = '`' + '`'.join(stock_list)
|
|
|
#))
|
|
|
|
|
|
self.ddb_sess.run("""
|
|
|
{dbName} = database(
|
|
|
directory = '{dbPath}',
|
|
|
partitionType = COMPO,
|
|
|
partitionScheme = [db_date, db_stock],
|
|
|
engine = "TSDB")
|
|
|
""".format(
|
|
|
dbName = self.ddb_dbname,
|
|
|
dbPath = self.ddb_path
|
|
|
))
|
|
|
|
|
|
self._load_ddb_dump_journal(recreate=True)
|
|
|
|
|
|
|
|
|
def load_ddb_database(self):
|
|
|
db_date = self.ddb_sess.database('db_date', dbPath='')
|
|
|
db_stock = self.ddb_sess.database('db_stock', dbPath='')
|
|
|
|
|
|
self.ddb_sess.run("{dbName} = database(directory='{dbPath}')".format(
|
|
|
dbName = self.ddb_dbname,
|
|
|
dbPath = self.ddb_path
|
|
|
))
|
|
|
|
|
|
self._load_ddb_dump_journal()
|
|
|
|
|
|
|
|
|
def _load_ddb_dump_journal(self, recreate=False):
|
|
|
if recreate or not Path(self.ddb_dump_journal_fname).exists():
|
|
|
print('Will create new dump journal.')
|
|
|
self.dump_journal_writer = open(self.ddb_dump_journal_fname, 'w')
|
|
|
self.dump_journal_writer.write("type_name,stock_id,status\n")
|
|
|
self.dump_journal_writer.flush()
|
|
|
else:
|
|
|
print('Will load previous dump journal.')
|
|
|
self.dump_journal_writer = open(self.ddb_dump_journal_fname, 'a')
|
|
|
|
|
|
self.dump_journal_df = pd.read_csv(self.ddb_dump_journal_fname)
|
|
|
self.dump_journal_df.set_index(['type_name', 'stock_id', 'status'], inplace=True)
|
|
|
# 因为dump_journal_df只会在创建的时候载入一次数据,之后不会在写入,因此可以在此时对index进行排序
|
|
|
self.dump_journal_df.sort_index(inplace=True)
|
|
|
print('Did load the dump journal, shape', self.dump_journal_df.shape)
|
|
|
#pprint(self.dump_journal_df.head())
|
|
|
|
|
|
|
|
|
def create_ddb_calendar(self, df_calendar):
|
|
|
mem_table = self.ddb_calendar_table_name + self.ddb_memory_table_suffix
|
|
|
per_table = self.ddb_calendar_table_name
|
|
|
# 1. 创建临时内存表
|
|
|
# calendar的行数大概是股票数量 * 交易日数量
|
|
|
self.ddb_sess.run("""
|
|
|
{table_name} = table({capacity}:0, {col_names}, [{col_types}]);
|
|
|
""".format(
|
|
|
table_name = mem_table,
|
|
|
capacity = 5000 * 1000,
|
|
|
col_names = '`code`m_nDate',
|
|
|
col_types = "SYMBOL, DATE"
|
|
|
))
|
|
|
print('Did create the memory table')
|
|
|
|
|
|
# 2. 向内存表中插入所有(code, date)数据
|
|
|
appender = ddb.tableAppender(tableName=mem_table, ddbSession=self.ddb_sess)
|
|
|
num = appender.append(df_calendar)
|
|
|
print('Did append calendar data into ddb memory table, return code', num)
|
|
|
|
|
|
# 3. 创建持久化表格之前需要先根据路径创建一个database对象
|
|
|
# 但研究了一下,发现好像一个database里面可以同时存在分区表和非分区表,
|
|
|
# 所以在这里暂时就不创建新的database了
|
|
|
# 但因为原database设置成了TSDB,所以必须在createTable的时候指定sortKey
|
|
|
#self.ddb_sess.run("""
|
|
|
# {db_name} =
|
|
|
#""")
|
|
|
|
|
|
# 4. 直接从内存表创建一个持久化表格
|
|
|
if self.ddb_sess.existsTable(self.ddb_path, per_table):
|
|
|
self.ddb_sess.dropTable(self.ddb_path, per_table)
|
|
|
self.ddb_sess.run("""
|
|
|
tableInsert(createTable(
|
|
|
dbHandle={ddb_dbname},
|
|
|
table={mem_table},
|
|
|
tableName=`{per_table},
|
|
|
sortColumns=`code`m_nDate,
|
|
|
compressMethods={{"m_nDate":"delta"}}
|
|
|
), {mem_table})
|
|
|
""".format(
|
|
|
ddb_dbname = self.ddb_dbname,
|
|
|
mem_table = mem_table,
|
|
|
per_table = per_table
|
|
|
))
|
|
|
print('Did create the persistent table with the memory table')
|
|
|
|
|
|
|
|
|
def make_calendar_df(self):
|
|
|
print('Will create calendar dataframe from SQL Server')
|
|
|
# 从KLine表查询,主要是因为KLine表最小
|
|
|
with self.mssql_engine.connect() as conn:
|
|
|
stat = "select distinct S_INFO_WINDCODE, TRADE_DT from Level2BytesKline.dbo.KLine"
|
|
|
rs = conn.execute(stat)
|
|
|
stock_date_list = [(stock_name, date) for stock_name, date in rs.fetchall()]
|
|
|
|
|
|
df_calendar = pd.DataFrame(stock_date_list, columns=['code', 'm_nDate'])
|
|
|
df_calendar['m_nDate'] = make_date(df_calendar['m_nDate'])
|
|
|
print('Did make the DataFrame for calendar')
|
|
|
return df_calendar
|
|
|
|
|
|
|
|
|
def _make_table_skeleton(self, hft_type_name, table_capacity=default_table_capacity):
|
|
|
|
|
|
def _make_tbl_config(field_list):
|
|
|
"""
|
|
|
根据ProtoBuffEntity对象的Descriptor.fields,创建ddb标准的列名列表和列类型列表。
|
|
|
"""
|
|
|
col_name_list, col_type_list = [], []
|
|
|
for desc in field_list:
|
|
|
col_name_list.append(desc.name)
|
|
|
# 如果对列明有特殊设定,目前仅包括`code`m_nDate和`m_nTime三个字段
|
|
|
if desc.name in self.col_type_mapping:
|
|
|
col_type_list.append(self.col_type_mapping[desc.name])
|
|
|
# 通过对ProtoBuffEntity的类型编号,映射到ddb的类型编号
|
|
|
# 如果默认值是一个数组,那么ddb类型要额外增加说明是数组
|
|
|
# ProtoBuffEntity的类型编号只针对基本类型,数组需要通过`default_value`来判断
|
|
|
else:
|
|
|
col_type = self.col_type_mapping[desc.type]
|
|
|
if isinstance(desc.default_value, list):
|
|
|
col_type += '[]'
|
|
|
col_type_list.append(col_type)
|
|
|
return col_name_list, col_type_list
|
|
|
|
|
|
desc_obj = self.protobuff_desc_dict[hft_type_name]
|
|
|
col_name_list, col_type_list = _make_tbl_config(desc_obj.fields)
|
|
|
|
|
|
table_name = hft_type_name + self.ddb_memory_table_suffix
|
|
|
print('-' * 80)
|
|
|
print('Will create table structure:', table_name)
|
|
|
|
|
|
self.ddb_sess.run("""
|
|
|
{table_name} = table({capacity}:0, {col_names}, [{col_types}]);
|
|
|
""".format(
|
|
|
table_name = table_name,
|
|
|
capacity = table_capacity,
|
|
|
col_names = '`' + '`'.join(col_name_list),
|
|
|
col_types = ', '.join([f"'{type_name}'" for type_name in col_type_list])
|
|
|
))
|
|
|
res = self.ddb_sess.run(f"schema({table_name}).colDefs")
|
|
|
pprint(res)
|
|
|
print('-' * 80)
|
|
|
return table_name
|
|
|
|
|
|
|
|
|
def create_ddb_partition_table(self, hft_type_name):
|
|
|
memory_table_name = self._make_table_skeleton(hft_type_name, 10)
|
|
|
partition_table_name = hft_type_name + self.ddb_partition_table_suffix
|
|
|
|
|
|
print('-' * 80)
|
|
|
print('Will create partitioned table:', partition_table_name)
|
|
|
|
|
|
self.ddb_sess.run("""
|
|
|
{ddb_dbname}.createPartitionedTable(
|
|
|
table = {memory_table_name},
|
|
|
tableName = `{partition_table_name},
|
|
|
partitionColumns = `m_nDate`code,
|
|
|
sortColumns = `code`m_nDate`m_nTime,
|
|
|
compressMethods = {{m_nDate:"delta", m_nTime:"delta"}}
|
|
|
)
|
|
|
""".format(
|
|
|
ddb_dbname = self.ddb_dbname,
|
|
|
memory_table_name = memory_table_name,
|
|
|
partition_table_name = partition_table_name
|
|
|
))
|
|
|
|
|
|
res = self.ddb_sess.run(f"schema(loadTable('{self.ddb_path}', '{partition_table_name}')).colDefs")
|
|
|
pprint(res)
|
|
|
print('-' * 80)
|
|
|
|
|
|
|
|
|
def dump_hft_to_ddb(self, type_name, stock_id, trade_date=None, pbar=None, pool=None):
|
|
|
if (type_name, stock_id, 'OK') in self.dump_journal_df.index:
|
|
|
message = f"Wiil skip ({type_name}, {stock_id}) as it appears in the dump journal."
|
|
|
if pbar is None:
|
|
|
print(message)
|
|
|
else:
|
|
|
pbar.set_description(message)
|
|
|
return
|
|
|
|
|
|
self.dump_journal_writer.write(f"{type_name},{stock_id},START\n")
|
|
|
self.dump_journal_writer.flush()
|
|
|
|
|
|
# 经过尝试,按个股来做batch查询效率还是可以接受的
|
|
|
# mssql中,索引字段是(S_INFO_WINDCODE, TRADE_DT)
|
|
|
with self.mssql_engine.connect() as conn:
|
|
|
stat = """
|
|
|
select * from [Level2Bytes{mssql_type_name}].dbo.[{mssql_type_name}]
|
|
|
where S_INFO_WINDCODE='{stock_id}'
|
|
|
""".format(
|
|
|
mssql_type_name = self.mssql_name_dict[type_name],
|
|
|
stock_id = stock_id
|
|
|
)
|
|
|
row_list = list(conn.execute(stat).fetchall())
|
|
|
num_rows = len(row_list)
|
|
|
|
|
|
if pbar:
|
|
|
#pbar.set_description(f"Did get the result set for stock {stock_id} from mssql")
|
|
|
pbar.set_description(f"Will work in paralle on dumping job on {stock_id} of len {num_rows}")
|
|
|
else:
|
|
|
print(f"Did get the result set for stock {stock_id} from mssql")
|
|
|
|
|
|
# 每一行是当个个股某一日的所有高频交易信息
|
|
|
# 使用多进程来加快速度
|
|
|
|
|
|
#with Pool(self.num_workers if num_workers is None else num_workers) as pool:
|
|
|
if pool is None:
|
|
|
print("Will create new Pool object, but this is not encourage for large batch work.")
|
|
|
pool = Pool(self.num_worker)
|
|
|
|
|
|
# 在单个股票内部,对不同日期进行并行处理,对内存使用较为友好,不需要同时载入多个股票海量的全历史数据
|
|
|
with tqdm(total=num_rows, leave=False) as sub_pbar:
|
|
|
for _ in pool.imap_unordered(
|
|
|
functools.partial(
|
|
|
dump_stock_daily_to_ddb,
|
|
|
type_name = type_name,
|
|
|
stock_id = stock_id
|
|
|
),
|
|
|
row_list
|
|
|
):
|
|
|
sub_pbar.update()
|
|
|
|
|
|
self.dump_journal_writer.write(f"{type_name},{stock_id},OK\n")
|
|
|
self.dump_journal_writer.flush()
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
def make_stock_daily_df(blob, type_name, stock_id):
|
|
|
"""
|
|
|
用于做多进程录入ddb的函数
|
|
|
"""
|
|
|
blob = gzip.decompress(blob)
|
|
|
dataArray = eval(f"ProtoBuffEntitys.{type_name}Message_pb2.{type_name}Array()")
|
|
|
dataArray.ParseFromString(blob)
|
|
|
|
|
|
data_dict_list = [
|
|
|
{field.name : val for field, val in entry.ListFields()}
|
|
|
for entry in dataArray.dataArray
|
|
|
]
|
|
|
|
|
|
array_type_list = [
|
|
|
field.name
|
|
|
for field, val in dataArray.dataArray[0].ListFields()
|
|
|
if isinstance(field.default_value, list)
|
|
|
]
|
|
|
#pprint(array_type_list)
|
|
|
|
|
|
df = pd.DataFrame(data_dict_list)
|
|
|
#df['code'] = make_symbol(df['code'])
|
|
|
df['code'] = stock_id
|
|
|
df['m_nDate'] = make_date(df['m_nDate'])
|
|
|
df['m_nTime'] = df['m_nDate'] + make_time(df['m_nTime'])
|
|
|
for field_name in array_type_list:
|
|
|
df[field_name] = make_nparray(df[field_name])
|
|
|
|
|
|
#print(f"Did create ddb table for dataframe of shape {df.shape}")
|
|
|
# self.make_table_skeleton(type_name, df.shape[0])
|
|
|
return df
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
def dump_stock_daily_to_ddb(row, type_name, stock_id):
|
|
|
"""
|
|
|
用于做多进程录入ddb的函数
|
|
|
"""
|
|
|
df_table_name = type_name
|
|
|
df = make_stock_daily_df(row[2], type_name, stock_id)
|
|
|
|
|
|
ddb_sess = ddb.session(DDBLoader.ddb_config['host'], 8848)
|
|
|
ddb_sess.login(DDBLoader.ddb_config['username'], DDBLoader.ddb_config['password'])
|
|
|
|
|
|
ddb_sess.upload({df_table_name : df})
|
|
|
ddb_sess.run("tableInsert(loadTable('{dbPath}', `{partitioned_table_name}), {df_table_name})".format(
|
|
|
dbPath = DDBLoader.ddb_path,
|
|
|
partitioned_table_name = type_name + DDBLoader.ddb_partition_table_suffix,
|
|
|
df_table_name = df_table_name
|
|
|
))
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
|
# PIT基本面数据
|
|
|
loader = DDBPITLoader()
|
|
|
loader.create_ddb_database()
|
|
|
#loader.create_ddb_partition_tables()
|
|
|
loader.dump_pit_to_ddb()
|
|
|
|
|
|
# 日频行情数据
|
|
|
#loader = DDBDailyLoader()
|
|
|
#loader.load_ddb_database()
|
|
|
#loader.dump_daily_kline_to_ddb()
|
|
|
|
|
|
|
|
|
# 高频数据
|
|
|
#df_calendar = loader.make_calendar_df()
|
|
|
|
|
|
#loader.init_ddb_database(df_calendar)
|
|
|
#print('Did finish init_ddb_database')
|
|
|
|
|
|
#loader.load_ddb_database()
|
|
|
#print('Did load ddb database')
|
|
|
|
|
|
#loader.init_ddb_table_data(df_calendar)
|
|
|
#print('Did finish init_table_data')
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
main()
|
|
|
|